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Abstract— Railway system operations are facing with
stochastic disturbances, which cause the delay of trains in
operational phase. Thus, a robust timetable should be designed
to avoid delay propagation as much as possible in scheduling
phase. For that purpose, time allowances are added into
timetable in scheduling phase. This paper proposes a mixed
integer linear programming (MILP) model that can be used to
distribute runtime supplements in order to improve timetable
robustness, in which stochastic disturbances are described in the
form of probability and integrated into the model. Two
simulations based on Guangzhou subway are processed, and
sensitivity analysis of the size of total runtime supplement on
robustness is observed. The results show that the average delay
time can be reduced significantly by applying the proposed
MILP method. Meanwhile, this method shows high efficiency in
computing the optimal results.

1. INTRODUCTION

With the increasing scale of railway systems and demand
for transportation, railway systems are highly affected by
disturbances. Timetable is an important part of railway system
management, which determines the position of trains at
specific times. Running times between stations, dwell times at
stations and headways between trains are all decided in
timetable scheduling. Therefore, a robust timetable can help
railway system being strong under disturbances, avoiding
delay propagation as much as possible. Many researchers have
paid attention to robust train timetable planning (RTTP).
There are some comprehensive surveys on robust train
timetabling [1]-[3].

Methods used to improve timetable robustness can be
divided into five major categories [2]. Fischetti and Monaci [4]
proposed the concept of light robustness, in which slack
variables were introduced to relax the feasibility constraints.
The sum of the slack variables was minimized to improve
timetable robustness. Liebchen et al. [5] applied recoverable
robustness into RTTP combining robustness and delay
management. A set of recovery algorithms were defined to
make the timetable recoverable under disturbances. However,
only partial recovery actions could be taken into account.
Recovery-to-optimality was introduced to determine a
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recovery action which can make the timetable recovered to the
scheduling with smallest cost [6]. Stochastic programming
was a method to improve timetable robustness under pregiven
disturbance scenarios. Kroon et al. [7] used a two-stage
stochastic model to minimize the weighted delays of trains
under real-world disturbance data, where the time
supplements and the buffer times are optimized to improve the
robustness of cyclic railway timetables. Lagrangian
robustness applied simple modification into above methods,
which performed better in computation efficiency. Cacchiani
[8] built a lagrangian heuristic method to improve timetable
robustness, which was very competitive and obtained robust
solutions of good quality in short computing time.

Either method, the key point of RTTP is to find a more
robust timetable by adding time allowances into train process
(i.e., running between stations) as runtime supplements, (i.c.,
departing from starting station) as buffer times, and (i.e.,
dwelling at stations) as additional dwell times. Meanwhile, the
degree of robustness is influenced by the location and size of
runtime supplements, buffer times and additional dwell times.
Shafia et al. [9] took buffer time as decision variable to
optimize timetable under known and unknown distribution
functions of disturbances in a single-track railway line.
Besinovi¢ et al. [10] evaluated timetable robustness at the
macroscopic level, and they adjusted runtime supplements and
buffer times iteratively to improve robustness. Meanwhile, the
feasibility and stability of timetable were generated at the
microscopic level. Sahin [11] solved the RTTP problem by
markov chain model, in which departure and arrival times were
optimized to improve robustness. Zieger et al. [12] analyzed
the impact of different buffer times distribution scheme on
delay propagation using an iterative simulation approach.
Biiker and Seybold [13] used an activity graph to describe the
delay propagation, and distribution to describe the disturbance
as random variables. Iterative optimization was proposed to
form the robust timetable. Solinen et al. [14] focused on the
indicator robustness in critical points, and the robustness was
evaluated by using the microscopic railway simulation RailSys.
Khan and Zhou [15] developed a stochastic programming
model for adjusting runtime supplements and additional dwell
times that aimed to reduce the average schedule delay.
Fischetti et al. [16] proposed four different stochastic
programming models focusing on robustness improvement of
a given disturbance scenarios. Most of these researches are
based on stochastic programming [7], [12]-[16], and optimize
timetable iteratively according to its robustness performance in
the simulation under stochastic disturbances.
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This paper only focuses on stochastic programming for
adjusting runtime supplements to improve timetable
robustness. The contributions of this paper can be summarized
as follows. Different from the typical stochastic programming,
stochastic disturbances are described in the form of probability
and integrated into the model. The robust timetable can be
optimized without iteration, which improve the computational
efficiency. Another aspect of the contributions is that a
sensitivity analysis of the size of total runtime supplement on
robustness is observed.

The rest of this paper is organized as follows. In section II,
robust timetable problem and optimization model are stated. In
section III, the model of improving timetable robustness is
rebuilt into a MILP model. In section IV, case studies of
Guangzhou subway are demonstrated to verify the feasibility
of the model and the algorithm. Conclusions are given in
section V.

II. ROBUST TIMETABLE PROBLEM

In this section, the influence of runtime supplements on
timetable robustness is stated. Meanwhile, optimization model
for RTTP is built under several necessary assumptions to
reduce average delay time.

A. Problem Description

A train timetable is identified as robust when it can avoid
delay propagation as much as possible. An effective way to
avoid delay propagation is adding runtime supplement into
train running process between stations, which can absorb
potential delay occurring in practical operation. When affected
by disturbance, a train will departure from the station later than
the pregiven departure time, if the initial delay time is shorter
than the runtime supplement of adjacent interstation, then the
train can arrive at the next station punctually. However, if the
disturbance is very strong, delay will propagate to the next
stations. Obviously, with more runtime supplements adding to
running process between stations, timetable will perform
better at robustness. Total runtime time of the travel will

Space A

Station 4

Station 3

Station 2
Station 1
Arcs in planning phase
—.-.0 Arcs in practical phase under disturbance
Figure 1. The delay propagation of two timetables

increase when more runtime supplements are added, which
will reduce the transportation efficiency of timetable.
Therefore, the size of runtime supplement is limited in order to
maintain efficiency in the timetable planning phase. On the
other hand, the size and position of runtime supplement
addition will influence the robustness. Fig. 1 shows the delay
propagation phenomenon of two timetables with different
runtime supplement distribution scheme. When a disturbance
take place in Station 2, the Timetable 1 can absorb the
influence of disturbance and avoid delay propagation with the
help of sufficient runtime supplement in the interstation
between Station 2 and Station 3, the Timetable 2 can’t avoid
delay propagation effectively, delay propagate to Station 3 and
Station 4. Therefore, distributing runtime supplements (size
and position) wisely can improve timetable robustness.

In addition, the position and degree of disturbances will
influence the distribution of runtime supplements. If the
disturbance take place in Station 3 in Fig. 1, more runtime
supplement should be added in the interstation between
Station 2 and Station 3 to reduce delay propagation. However,
the state of disturbances is difficult to define in planning phase.
In this paper, the state of disturbances is defined according to a
lot number of actual operational data, and three key indicators
are defined, including position, original delay time and
probability. Then, the distribution of runtime supplements can
be optimized under the pretreated disturbances, which means
that disturbances are expressed by position, intensity and
probability. Meanwhile, the average delay time of stations
along a line is set as the key performance indicator of timetable
robustness.

B. Assumptions and Notations

In order to clarify main purpose of this paper, the following
assumptions are stated:

1) Orders of trains do not change in the operational phase.
Trains have to operate according to the timetable, and
overtaking is not allowed in this paper.

2) Adding or removing a train is not allowed. In other
words, disturbance that affects normal operation is not
discussed in this paper.

3) Disturbances will not happen at the same time. The
delay is caused by single disturbance, not by multiple
disturbances jointly. Disturbances are taken into account only
after the previous delay propagation is over.

4) The dwell times are fixed in the operational phase,
which is to ensure passengers get on and off the train. The
optimization of additional dwell time is not considered in this
paper.

5) Delay propagation will not influence adjacent trains,
because of that the internal delay time is shorter than the
pregiven buffer times. The optimization of buffer times is not
considered in this paper.

Next, notions used throughout the remainder of this paper
are introduced as followings:

1) Decision Variables:

2804



t runtime supplement of the ith interstation.
2) Parameters:

N number of interstations;

K number of disturbances;

T: total runtime;

Trin
Towp

minimum total runtime;
total runtime supplement;

Ts  average delay time;

t;mn Minimum runtime supplement of the ith interstation;
timax Maximum runtime supplement of the ith
interstation;

I original intensity of the kth disturbanc;
Sk station num of the kth disturbance happening at;

P¢ probability of the kth disturbance, which is between
0 and 1;

& a small positive number;

d"max maximum delay time of the kth disturbance, which is

equal to I%;

d*min - minimum delay time of the kth disturbance, which is

equal to 0.

3) Intermediate Variables:

d,f  delay time propagating to the nth station of the kth
disturbance;

6,F  logical variable corresponding to d,F;

#*,; auxiliary variable corresponding to the product 8,¢;

Additionally, disturbances happening in the interstation
can be treated as disturbances happening in the next adjacent

station, and the original delay time is equal to the delay time of
arriving at the next adjacent station.

C. Model Formulation

The process of a train traveling in a line from Station 1 to
Station N+1 is researched, which includes N interstations.
Firstly, the total runtime of the travel consists of the minimum
total runtime and the total runtime supplement, which can be
described as:

T, =Ty +T, (M

t

The total runtime supplement satisfies the constraint:
N
Ty =21 )
i=1
And, the runtime of each interstations should satisfies the

constraint:

b ST ST

i, i,max ?

1<i<N &)

Avoiding delay propagation is a major indicator evaluating
timetable robustness. Reducing the average delay time of
stations is an effective way to improve the ability of avoiding
delay propagation. Thus, the objective function of improving
timetable robustness model is described as:

K N+1
min T, =Z(P"dej @)
k=1 n=1

The delay time d,* is influenced by the position of
disturbance and station. According to the positional
relationship between the disturbance and station, the
calculation of delay time d,* causing by the kth disturbance can
be divided into three conditions:

1) the nth station is before the S'th station:
d"=0forn<S* (5)
2) the nth station is the S*th station:
d' =1" forn=5* (6)

3) the nth station is after the S*th station:

n—1
di =1" =3t forn>S* (7

i=s*

However, delay time must be positive, delay time of the
condition /) has no practical meaning, delay time of the
condition 3) could be negative, which requires further
explanation. The calculation of the condition 3) can be
concluded as:

Ik—niti I"—niti>0
df(n>s)=1 o ®)
0 I"=>"1,<0

i=s*

In this model, runtime supplement is taken as decision
variables, the optimal objective is to reduce the average delay
time. The constraints are all linear equations. The objective
function is nonlinear because of the complex calculation of
delay time, which improves the difficulty of solving.

III. THE MILP PROBLEM

In this section, logical and auxiliary variables are
introduced to linearize the calculation of delay time, which can
make the optimal model rebuilt into a MILP model.

A. Logical Variables

In order to build MILP model, the calculation of delay time
d,* should be transformed into linear equations. Here, logical
variable 6,* is introduced according to the three conditions,
defined as:

1) the nth station is before the S*th station:
S =0forn<S" 9)

2) the nth station is the S'th station:
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St =1forn=5" (10)
3) the nth station is after the S*th station:
n—1
{zk - >o}@[5: =1]
- forn>S" (1)

{ﬂ—njgso}@[&::o]

i=S*

Since the maximum and minimum values of d,* are d.x and
d"min respectively, the logical conditions (11) can be expressed
as [17]:

max

i, —d} <5} (dy, —¢

df <std!
) (12)

Where, ¢ is introduced to transform a strict equality into a
non-strict inequality, which fits the MILP framework. The
function (8) can be rewritten as:

n—1
df =o' (ﬂ —Zz,.j for n > S*

i=sk

(13)

Then, with the help of logical variable 6, the calculation of
delay time can be described by J,“d,*. The objective function
(4) can be rewritten as:

min T, = Z(Pkgydfj

N+1 n—1
P 4Py {5: (1" —Zt,.ﬂ (14)
n=S*+1 i=S*
{PU"+P" NZ‘i [5"1" Z H
n=S*+1 i=sk

Where, the product J,# is nonlinear, which doesn’t fit the
MILP framework. Therefore, auxiliary variables are
introduced to solve this problem.

I
DM~

=
o

Il
M=

-
n

B. Auxiliary Variables

In order to build MILP model, the nonlinear product J,t;
in function (14) needs to be linearized. Auxiliary variable 7%,
is introduced, defined as:

nnl _é‘: i (15)

Since the maximum and minimum values of #; are ¢; min and #; max
respectively, the function (15) can be expressed as [17]:

’71(__ S
’71(’._ St

o<t - (1-6) 1o
Mzt =t (1-0F)

Then, the objective function (14) can be rewritten a linear
function as:

n=S*+1 i=S*

—ZP"I" +Z Z PrSET - Z Z ZP";]W

k=1 n=S*+1 k=1 p=5*+1i=*

min 7, i{P"I’%P" 3 (5,51“53%‘,;]}
(17

C. The MILP Model

After introducing logical and auxiliary variables, the model
in the section II can be rebuilt into a MILP model. The decision
variables of the MILP model can be defined as:

t=[t,-,]

5:[51 511V+] é‘ 51(7(+]:| (18)
77 :[771 nk 77’(:|
Where, variable #* can be described as:
77k :[771/?1 "'77;\{/“,1 "‘UllfN“'Ufm,N] (19)

And, some of decision variables are binary and some are real
variables, decision variable matrix of the MILP model is
described as:

x=[i s ] (20)

And, the objective function of the MILP model can be
described as:

min T, = FeX 21

subject to
M <X <m, (22)
M2 oX = m2 (23)

Where, the coefficient matrix /' can be obtained according to
the function (17), described as:

F:[o...o...[ﬂ]l...PK1K...P1...pK] (24)
And, the coefficient matrix M; and m; can be obtained
according to the function (3), (12) and (16). The coefficient
matrix M, and m» can be obtained according to the function
2).

In addition, the MILP problem (21)-(23) can be solved by
branch-and-bound algorithms implemented in several existing
commercial and free solvers. In this paper, we use CPLEX to
solve this problem.

IV. CASE STUDIES

In this section, proposed method is applied to a metro
railway instance of peak hours and off-peak hours. For
disturbances in different scenarios, different distribution
schemes of runtime supplement are compared and sensitivity
of the size of total runtime supplement on robustness is
analyzed. Meanwhile, we discuss the impact of total runtime
on average delay time. Case studies are based on a metro line
in Guangzhou, which consists of 13 stations. Disturbance data
comes from actual operation, which is represented in an
appropriate form. Case studies are tested under MATLAB
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environment on a computer with an Intel Core i5 2.30 GHz
CPU and 8GB RAM, which are performed using CPLEX
Slover 12.6.

A. Simulation of Off-peak Hours

The total runtime of off-peak hours is 1126s, the minimum
runtime is 994s, and the total runtime supplement is 132s. The
minimum runtime supplement of each interstation is 9s, and
the maximum runtime supplement is 14s. Disturbances of peak
hours are shown in TABLE I.

Three kinds of disturbance scheme are compared in this
simulation:

e PDS: Practical Distribution Scheme.

e EDS: Equal Distribution Scheme.

e ODS: Optimal Distribution Scheme.

Three disturbance schemes of off-peak hours are shown in
TABLE II. As shown in TABLE V. the average delay times of
PDS and EDS are 39.6s and 38.3s respectively. The average
delay time of ODS is 33.3s, which is 15.9% lower than PDS
and 13.1% lower than EDS. The computing time of ODS is

0.09s, which reflects the high computational efficiency of the
method.

TABLE L. DISTURBANCES OF OFF-PEAK HOURS
Num Position Intensity (s) Probability
1 Station 1 20 1/9
2 Station 5 20 1/9
3 Station 8 30 3/9
4 Station 11 20 2/9
5 Station 12 20 2/9
TABLE II. RUNTIME DISTRIBUTION SCHEMES OF OFF-PEAK HOURS
Num of Runtime (s)
interstation PDS EDS ODS
1 14 11 14
2 9 11 10
3 10 11 6
4 12 11
5 12 11 14
6 9 11 12
7 14 11 8
8 9 11 14
9 10 11 14
10 11 11 6
11 13 11 14
12 9 11 14

B. Simulation of Peak Hours

In this part, the simulation of peak hours is processed. The
total runtime of peak hours is 1066s, the minimum runtime is
994s, and the total runtime supplement is 72s. The minimum
runtime supplement of each interstation is 4s, and the

maximum runtime supplement is 12s. Disturbances of peak
hours are shown in TABLE III.

Three kinds of distribution scheme are compared in this
simulation. Runtime supplements of PDS, EDS and ODS are
shown in TABLE IV. As shown in TABLE V. the average
delay times of PDS and EDS are 79.1s and 78.1s respectively.
The average delay time of ODS is 70.3s, which is 11.1% lower
than PDS and 9.9% lower than EDS. Without changing the
total runtime, the ODS can improve the timetable robustness
obviously. The computing time of ODS is 0.13s. Compared
with the simulation of off-peak hours, with the increasing of
disturbances (quantity and intensity), the average delay time of
this simulation has increased obviously, which reflects that
there is more room for improvement of timetable robustness in
peak hour. Additionally, the computing time has not increased
a lot, which reflects that the method can respond to
huge-amount disturbance scenarios. In order to prove
computing efficiency, a simulation with 50 different
disturbances is processed and the ODS can be calculated in
1.41s, which is not described here.

TABLE III. DISTURBANCES OF PEAK HOURS
Num Position Intensity (s) Probability
1 Station 1 20 1/14
2 Station 4 30 2/14
3 Station 5 20 3/14
4 Station 8 40 2/14
5 Station 10 60 1/14
6 Station 11 20 3/14
7 Station 12 30 2/14
TABLE IV. RUNTIME DISTRIBUTION SCHEMES OF PEAK HOURS
Num of Runtime (s)
interstation PDS EDS oDS
1 10 6
2 4 6
3 5 6
4 6 6
5 6 6 12
6 4 6
7 10 6
8 4 6 12
9 5 6
10 6 6
11 8 6 12
12 4 6 4
TABLE V. AVERAGE DELAY TIMES
Period Average delay time (s)
PDS EDS ODS
Off-peak 39.6 38.3 333
Peak 79.1 78.1 70.3
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C. Sensitivity Analysis of the Size of Total Runtime
Supplement on Robustness

In order to analyze the sensitivity of the size of total
runtime supplement on timetable robustness, runtime
supplements are added into the simulation of off-peak hours
and peak hours respectively. The trend of the average delay
times is shown in Fig 1. The average delay times can be
efficiently reduced by increasing the total runtime supplement.
However, when the total runtime supplement reaches a certain
level, the effect is in vain. The time thresholds of simulation of
off-peak hours and peak hours are both 120s. Adding runtime
supplement above 120s has no effect on reducing the average
delay time. Therefore, runtime supplement should be added
based on the relationship between the total runtime
supplement and the average delay time to make runtime
supplement play a better role in improving timetable
robustness.

100 T r T . r x

90 ]
80 ]
70 f .
60 1

50 7

Average delay time (s)

40 60 80 100 120 140 160 180

Total runtime supplement (s)

— Off-peak hours — Peak hours

Figure 2. Relationship between the total runtime supplement and the
average delay time

V. CONCLUSION

For improving timetable robustness, a MILP model is built
to reduce the average delay time by optimizing the distribution
scheme of runtime supplements. The calculation of delay times
is analyzed, which is linearized by introducing logical and
auxiliary variables. Two simulations based on Guangzhou
subway (off-peak and peak hours) are processed. Simulation
results show that the average delay time can be reduced by
15.3% and 11.1% for off-peak and peak hours respectively.
Additionally, the high computing efficiency of this method
supports for its application to robust train timetable planning
(RTTP) with larger scale and more complex disturbance
scenarios. The research on the relationship between the total
runtime supplement and the average delay time can be applied
to problem about optimizing runtime. Timetable robustness
can be considered in the problem of multi-objective
optimization.

As the future work, more timetable parameters, like buffer
time and additional dwell time, should be considered into
RTTP to make a more robust timetable. The disturbances that

the model consider should be more general, which can make
the timetable performances more stable facing with various
disturbances. In addition, solutions that make the timetable
recoverable under disturbances should be researched.
Different solutions can be proposed for different disturbances.
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