
  

 
 

Abstract— Railway system operations are facing with 

stochastic disturbances, which cause the delay of trains in 

operational phase. Thus, a robust timetable should be designed 

to avoid delay propagation as much as possible in scheduling 

phase. For that purpose, time allowances are added into 

timetable in scheduling phase. This paper proposes a mixed 

integer linear programming (MILP) model that can be used to 

distribute runtime supplements in order to improve timetable 

robustness, in which stochastic disturbances are described in the 

form of probability and integrated into the model. Two 

simulations based on Guangzhou subway are processed, and 

sensitivity analysis of the size of total runtime supplement on 

robustness is observed. The results show that the average delay 

time can be reduced significantly by applying the proposed 

MILP method. Meanwhile, this method shows high efficiency in 

computing the optimal results.  

I. INTRODUCTION 

With the increasing scale of railway systems and demand 
for transportation, railway systems are highly affected by 
disturbances. Timetable is an important part of railway system 
management, which determines the position of trains at 
specific times. Running times between stations, dwell times at 
stations and headways between trains are all decided in 
timetable scheduling. Therefore, a robust timetable can help 
railway system being strong under disturbances, avoiding 
delay propagation as much as possible. Many researchers have 
paid attention to robust train timetable planning (RTTP). 
There are some comprehensive surveys on robust train 
timetabling [1]-[3].  

Methods used to improve timetable robustness can be 
divided into five major categories [2]. Fischetti and Monaci [4] 
proposed the concept of light robustness, in which slack 
variables were introduced to relax the feasibility constraints. 
The sum of the slack variables was minimized to improve 
timetable robustness. Liebchen et al. [5] applied recoverable 
robustness into RTTP combining robustness and delay 
management. A set of recovery algorithms were defined to 
make the timetable recoverable under disturbances. However, 
only partial recovery actions could be taken into account. 
Recovery-to-optimality was introduced to determine a 
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recovery action which can make the timetable recovered to the 
scheduling with smallest cost [6]. Stochastic programming 
was a method to improve timetable robustness under pregiven 
disturbance scenarios. Kroon et al. [7] used a two-stage 
stochastic model to minimize the weighted delays of trains 
under real-world disturbance data, where the time 
supplements and the buffer times are optimized to improve the 
robustness of cyclic railway timetables. Lagrangian 
robustness applied simple modification into above methods, 
which performed better in computation efficiency. Cacchiani 
[8] built a lagrangian heuristic method to improve timetable 
robustness, which was very competitive and obtained robust 
solutions of good quality in short computing time.  

Either method, the key point of RTTP is to find a more 
robust timetable by adding time allowances into train process 
(i.e., running between stations) as runtime supplements, (i.e., 
departing from starting station) as buffer times, and (i.e., 
dwelling at stations) as additional dwell times. Meanwhile, the 
degree of robustness is influenced by the location and size of 
runtime supplements, buffer times and additional dwell times. 
Shafia et al. [9] took buffer time as decision variable to 
optimize timetable under known and unknown distribution 
functions of disturbances in a single-track railway line. 
Bešinović et al. [10] evaluated timetable robustness at the 
macroscopic level, and they adjusted runtime supplements and 
buffer times iteratively to improve robustness. Meanwhile, the 
feasibility and stability of timetable were generated at the 
microscopic level. Şahin [11] solved the RTTP problem by 
markov chain model, in which departure and arrival times were 
optimized to improve robustness. Zieger et al. [12] analyzed 
the impact of different buffer times distribution scheme on 
delay propagation using an iterative simulation approach. 
Büker and Seybold [13] used an activity graph to describe the 
delay propagation, and distribution to describe the disturbance 
as random variables. Iterative optimization was proposed to 
form the robust timetable. Solinen et al. [14] focused on the 
indicator robustness in critical points, and the robustness was 
evaluated by using the microscopic railway simulation RailSys. 
Khan and Zhou [15] developed a stochastic programming 
model for adjusting runtime supplements and additional dwell 
times that aimed to reduce the average schedule delay. 
Fischetti et al. [16] proposed four different stochastic 
programming models focusing on robustness improvement of 
a given disturbance scenarios. Most of these researches are 
based on stochastic programming [7], [12]-[16], and optimize 
timetable iteratively according to its robustness performance in 
the simulation under stochastic disturbances. 
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Figure 1.  The delay propagation of two timetables 

 

This paper only focuses on stochastic programming for 
adjusting runtime supplements to improve timetable 
robustness. The contributions of this paper can be summarized 
as follows. Different from the typical stochastic programming, 
stochastic disturbances are described in the form of probability 
and integrated into the model. The robust timetable can be 
optimized without iteration, which improve the computational 
efficiency. Another aspect of the contributions is that a 
sensitivity analysis of the size of total runtime supplement on 
robustness is observed. 

The rest of this paper is organized as follows. In section Ⅱ, 
robust timetable problem and optimization model are stated. In 
section Ⅲ, the model of improving timetable robustness is 
rebuilt into a MILP model. In section Ⅳ, case studies of 
Guangzhou subway are demonstrated to verify the feasibility 
of the model and the algorithm. Conclusions are given in 
section Ⅴ. 

II. ROBUST TIMETABLE PROBLEM 

In this section, the influence of runtime supplements on 
timetable robustness is stated. Meanwhile, optimization model 
for RTTP is built under several necessary assumptions to 
reduce average delay time.  

A. Problem Description 

A train timetable is identified as robust when it can avoid 
delay propagation as much as possible. An effective way to 
avoid delay propagation is adding runtime supplement into 
train running process between stations, which can absorb 
potential delay occurring in practical operation. When affected 
by disturbance, a train will departure from the station later than 
the pregiven departure time, if the initial delay time is shorter 
than the runtime supplement of adjacent interstation, then the 
train can arrive at the next station punctually. However, if the 
disturbance is very strong, delay will propagate to the next 
stations. Obviously, with more runtime supplements adding to 
running process between stations, timetable will perform 
better at robustness. Total runtime time of the travel will 

increase when more runtime supplements are added, which 
will reduce the transportation efficiency of timetable. 
Therefore, the size of runtime supplement is limited in order to 
maintain efficiency in the timetable planning phase. On the 
other hand, the size and position of runtime supplement 
addition will influence the robustness. Fig. 1 shows the delay 
propagation phenomenon of two timetables with different 
runtime supplement distribution scheme. When a disturbance 
take place in Station 2, the Timetable 1 can absorb the 
influence of disturbance and avoid delay propagation with the 
help of sufficient runtime supplement in the interstation 
between Station 2 and Station 3, the Timetable 2 can’t avoid 
delay propagation effectively, delay propagate to Station 3 and 
Station 4. Therefore, distributing runtime supplements (size 
and position) wisely can improve timetable robustness. 

In addition, the position and degree of disturbances will 
influence the distribution of runtime supplements. If the 
disturbance take place in Station 3 in Fig. 1, more runtime 
supplement should be added in the interstation between 
Station 2 and Station 3 to reduce delay propagation. However, 
the state of disturbances is difficult to define in planning phase. 
In this paper, the state of disturbances is defined according to a 
lot number of actual operational data, and three key indicators 
are defined, including position, original delay time and 
probability. Then, the distribution of runtime supplements can 
be optimized under the pretreated disturbances, which means 
that disturbances are expressed by position, intensity and 
probability. Meanwhile, the average delay time of stations 
along a line is set as the key performance indicator of timetable 
robustness. 

B. Assumptions and Notations 

In order to clarify main purpose of this paper, the following 
assumptions are stated:  

1) Orders of trains do not change in the operational phase. 
Trains have to operate according to the timetable, and 
overtaking is not allowed in this paper.  

2) Adding or removing a train is not allowed. In other 
words, disturbance that affects normal operation is not 
discussed in this paper.  

3) Disturbances will not happen at the same time. The 
delay is caused by single disturbance, not by multiple 
disturbances jointly. Disturbances are taken into account only 
after the previous delay propagation is over.  

4) The dwell times are fixed in the operational phase, 
which is to ensure passengers get on and off the train. The 
optimization of additional dwell time is not considered in this 
paper. 

5) Delay propagation will not influence adjacent trains, 
because of that the internal delay time is shorter than the 
pregiven buffer times. The optimization of buffer times is not 
considered in this paper.  

Next, notions used throughout the remainder of this paper 
are introduced as followings: 

1) Decision Variables:  

2804



  

ti   runtime supplement of the ith interstation.  

2) Parameters:  

N  number of interstations;  

K  number of disturbances;  

Tt  total runtime;  

Tmin  minimum total runtime;  

Tsup  total runtime supplement;  

Td  average delay time;  

ti,min minimum runtime supplement of the ith interstation; 

ti,max maximum runtime supplement of the ith 
interstation; 

Ik original intensity of the kth disturbanc; 

Sk station num of the kth disturbance happening at; 

Pk  probability of the kth disturbance, which is between 
0 and 1;  

ε   a small positive number;  

dk
max maximum delay time of the kth disturbance, which is 

equal to Ik;  

dk
min minimum delay time of the kth disturbance, which is 

equal to 0.  

3) Intermediate Variables:  

dn
k  delay time propagating to the nth station of the kth  

disturbance; 

δn
k  logical variable corresponding to dn

k;  

ηk
n,i  auxiliary variable corresponding to the product δn

kti;  

Additionally, disturbances happening in the interstation 
can be treated as disturbances happening in the next adjacent 
station, and the original delay time is equal to the delay time of 
arriving at the next adjacent station. 

C. Model Formulation 

The process of a train traveling in a line from Station 1 to 
Station N+1 is researched, which includes N interstations. 
Firstly, the total runtime of the travel consists of the minimum 
total runtime and the total runtime supplement, which can be 
described as: 

 min suptT T T= +   (1) 

The total runtime supplement satisfies the constraint: 

 sup

1

N

i

i

T t
=

=    (2) 

And, the runtime of each interstations should satisfies the 
constraint: 

 ,min ,max ,  1i i it t t i N      (3) 

Avoiding delay propagation is a major indicator evaluating 
timetable robustness. Reducing the average delay time of 
stations is an effective way to improve the ability of avoiding 
delay propagation. Thus, the objective function of improving 
timetable robustness model is described as:  

 
1

1 1

min  
K N

k k

d n

k n

T P d
+

= =

 
=  

 
    (4) 

The delay time dn
k is influenced by the position of 

disturbance and station. According to the positional 
relationship between the disturbance and station, the 
calculation of delay time dn

k causing by the kth disturbance can 
be divided into three conditions: 

1) the nth station is before the Skth station: 

 0 for k k

nd n S=    (5) 

2) the nth station is the Skth station: 

  for k k k

nd I n S= =   (6) 

3) the nth station is after the Skth station: 

 
1

 for 
k

n
k k k

n i

i S

d I t n S
−

=

= −    (7) 

However, delay time must be positive, delay time of the 
condition 1) has no practical meaning, delay time of the 
condition 3) could be negative, which requires further 
explanation. The calculation of the condition 3) can be 
concluded as: 

 ( )

1 1

1

        0

0                     0

k k

k

n n
k k

i i

i S i Sk k

n n
k

i

i S

I t I t

d n S

I t

− −

= =

−

=


− − 


 = 

 − 


 


  (8) 

In this model, runtime supplement is taken as decision 
variables, the optimal objective is to reduce the average delay 
time. The constraints are all linear equations. The objective 
function is nonlinear because of the complex calculation of 
delay time, which improves the difficulty of solving.  

III. THE MILP PROBLEM 

In this section, logical and auxiliary variables are 
introduced to linearize the calculation of delay time, which can 
make the optimal model rebuilt into a MILP model. 

A.  Logical Variables 

In order to build MILP model, the calculation of delay time 
dn

k should be transformed into linear equations. Here, logical 
variable δn

k is introduced according to the three conditions, 
defined as: 

1) the nth station is before the Skth station: 

 0 for k k

n n S =    (9) 

2) the nth station is the Skth station: 
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 1 for k k

n n S = =   (10) 

3) the nth station is after the Skth station: 
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0 1
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

  (11) 

Since the maximum and minimum values of dn
k are dk

max and 
dk

min respectively, the logical conditions (11) can be expressed 
as [17]: 

 
( )

max

min min

k k k

n n

k k k k

n n

d d

d d d



 

 


−  −

  (12) 

Where, ε is introduced to transform a strict equality into a 
non-strict inequality, which fits the MILP framework. The 
function (8) can be rewritten as:  

 
1

 for 
k

n
k k k k

n n i

i S

d I t n S
−

=

 
= −  

 
   (13) 

Then, with the help of logical variable δn
k, the calculation of 

delay time can be described by δn
kdn

k. The objective function 
(4) can be rewritten as: 
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  (14) 

Where, the product δn
kti is nonlinear, which doesn’t fit the 

MILP framework. Therefore, auxiliary variables are 
introduced to solve this problem.  

B. Auxiliary Variables 

In order to build MILP model, the nonlinear product δn
kti 

in function (14) needs to be linearized. Auxiliary variable ηk
n,i 

is introduced, defined as: 

 
,

k k

n i n it =   (15) 

Since the maximum and minimum values of ti are ti,min and ti,max 
respectively, the function (15) can be expressed as [17]: 
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  (16) 

Then, the objective function (14) can be rewritten a linear 
function as: 

 

1 1

,

1 1

1 1 1

,

1 1 11 1

min  

=

k k

k k k

K N n
k k k k k k

d n n i

k n S i S

K K N K N n
k k k k k k k

n n i

k k kn S n S i S

T P I P I

P I P I P

 

 

+ −

= = + =

+ + −

= = == + = + =

  
= + −  

  

+ −

  

     

  (17) 

C. The MILP Model 

After introducing logical and auxiliary variables, the model 

in the section Ⅱ can be rebuilt into a MILP model. The decision 

variables of the MILP model can be defined as: 

 

 1

1 1

1 1 1 1

1

=

N

K K

N N

k K

t t t
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  (18) 

Where, variable ηk can be described as: 

 
1,1 1,1 1, 1,

k k k k k

N N N N    + +
 =     (19) 

And, some of decision variables are binary and some are real 

variables, decision variable matrix of the MILP model is 

described as: 

 
T

X t   =  
  (20) 

And, the objective function of the MILP model can be 

described as: 

 min  dT F X=   (21) 

subject to 

 1 1M X m   (22) 

 2 2M X m=   (23) 

Where, the coefficient matrix F can be obtained according to 

the function (17), described as: 

 1 1 10 0 K K KF P I P I P P =     (24) 

And, the coefficient matrix M1 and m1 can be obtained 

according to the function (3), (12) and (16). The coefficient 

matrix M2 and m2 can be obtained according to the function 

(2). 

In addition, the MILP problem (21)-(23) can be solved by 

branch-and-bound algorithms implemented in several existing 

commercial and free solvers. In this paper, we use CPLEX to 

solve this problem. 

IV. CASE STUDIES 

In this section, proposed method is applied to a metro 
railway instance of peak hours and off-peak hours. For 
disturbances in different scenarios, different distribution 
schemes of runtime supplement are compared and sensitivity 
of the size of total runtime supplement on robustness is 
analyzed. Meanwhile, we discuss the impact of total runtime 
on average delay time. Case studies are based on a metro line 
in Guangzhou, which consists of 13 stations. Disturbance data 
comes from actual operation, which is represented in an 
appropriate form. Case studies are tested under MATLAB 
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environment on a computer with an Intel Core i5 2.30 GHz 
CPU and 8GB RAM, which are performed using CPLEX 
Slover 12.6. 

A. Simulation of Off-peak Hours 

The total runtime of off-peak hours is 1126s, the minimum 
runtime is 994s, and the total runtime supplement is 132s. The 
minimum runtime supplement of each interstation is 9s, and 
the maximum runtime supplement is 14s. Disturbances of peak 
hours are shown in TABLE I.   

Three kinds of disturbance scheme are compared in this 
simulation: 

⚫ PDS: Practical Distribution Scheme.  

⚫ EDS: Equal Distribution Scheme. 

⚫ ODS: Optimal Distribution Scheme.  

Three disturbance schemes of off-peak hours are shown in 
TABLE II. As shown in TABLE V. the average delay times of 
PDS and EDS are 39.6s and 38.3s respectively. The average 
delay time of ODS is 33.3s, which is 15.9% lower than PDS 
and 13.1% lower than EDS. The computing time of ODS is 
0.09s, which reflects the high computational efficiency of the 
method.  

TABLE I.  DISTURBANCES OF OFF-PEAK HOURS 

Num Position Intensity (s) Probability 

1 Station 1 20 1/9 

2 Station 5 20 1/9 

3 Station 8 30 3/9 

4 Station 11 20 2/9 

5 Station 12 20 2/9 

 

TABLE II.  RUNTIME DISTRIBUTION SCHEMES OF OFF-PEAK HOURS 

Num of 

interstation 

Runtime (s) 

PDS EDS ODS 

1 14 11 14 

2 9 11 10 

3 10 11 6 

4 12 11 6 

5 12 11 14 

6 9 11 12 

7 14 11 8 

8 9 11 14 

9 10 11 14 

10 11 11 6 

11 13 11 14 

12 9 11 14 

 

B. Simulation of Peak Hours 

In this part, the simulation of peak hours is processed. The 
total runtime of peak hours is 1066s, the minimum runtime is 
994s, and the total runtime supplement is 72s. The minimum 
runtime supplement of each interstation is 4s, and the 

maximum runtime supplement is 12s. Disturbances of peak 
hours are shown in TABLE III.  

Three kinds of distribution scheme are compared in this 
simulation. Runtime supplements of PDS, EDS and ODS are 
shown in TABLE IV. As shown in TABLE V. the average 
delay times of PDS and EDS are 79.1s and 78.1s respectively. 
The average delay time of ODS is 70.3s, which is 11.1% lower 
than PDS and 9.9% lower than EDS. Without changing the 
total runtime, the ODS can improve the timetable robustness 
obviously. The computing time of ODS is 0.13s. Compared 
with the simulation of off-peak hours, with the increasing of 
disturbances (quantity and intensity), the average delay time of 
this simulation has increased obviously, which reflects that 
there is more room for improvement of timetable robustness in 
peak hour. Additionally, the computing time has not increased 
a lot, which reflects that the method can respond to 
huge-amount disturbance scenarios. In order to prove 
computing efficiency, a simulation with 50 different 
disturbances is processed and the ODS can be calculated in 
1.41s, which is not described here. 

TABLE III.  DISTURBANCES OF PEAK HOURS 

Num Position Intensity (s) Probability 

1 Station 1 20 1/14 

2 Station 4 30 2/14 

3 Station 5 20 3/14 

4 Station 8 40 2/14 

5 Station 10 60 1/14 

6 Station 11 20 3/14 

7 Station 12 30 2/14 

 

TABLE IV.  RUNTIME DISTRIBUTION SCHEMES OF PEAK HOURS 

Num of 

interstation 

Runtime (s) 

PDS EDS ODS 

1 10 6 4 

2 4 6 4 

3 5 6 4 

4 6 6 4 

5 6 6 12 

6 4 6 4 

7 10 6 4 

8 4 6 12 

9 5 6 4 

10 6 6 4 

11 8 6 12 

12 4 6 4 

 

TABLE V.  AVERAGE DELAY TIMES 

Period 
Average delay time (s) 

PDS EDS ODS 

Off-peak 39.6 38.3 33.3 

Peak 79.1 78.1 70.3 
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C. Sensitivity Analysis of the Size of Total Runtime 

Supplement on Robustness 

In order to analyze the sensitivity of the size of total 
runtime supplement on timetable robustness, runtime 
supplements are added into the simulation of off-peak hours 
and peak hours respectively. The trend of the average delay 
times is shown in Fig 1. The average delay times can be 
efficiently reduced by increasing the total runtime supplement. 
However, when the total runtime supplement reaches a certain 
level, the effect is in vain. The time thresholds of simulation of 
off-peak hours and peak hours are both 120s. Adding runtime 
supplement above 120s has no effect on reducing the average 
delay time. Therefore, runtime supplement should be added 
based on the relationship between the total runtime 
supplement and the average delay time to make runtime 
supplement play a better role in improving timetable 
robustness. 

V. CONCLUSION 

For improving timetable robustness, a MILP model is built 

to reduce the average delay time by optimizing the distribution 

scheme of runtime supplements. The calculation of delay times 

is analyzed, which is linearized by introducing logical and 

auxiliary variables. Two simulations based on Guangzhou 

subway (off-peak and peak hours) are processed. Simulation 

results show that the average delay time can be reduced by 

15.3% and 11.1% for off-peak and peak hours respectively. 

Additionally, the high computing efficiency of this method 

supports for its application to robust train timetable planning 

(RTTP) with larger scale and more complex disturbance 

scenarios. The research on the relationship between the total 

runtime supplement and the average delay time can be applied 

to problem about optimizing runtime. Timetable robustness 

can be considered in the problem of multi-objective 

optimization.  

As the future work, more timetable parameters, like buffer 

time and additional dwell time, should be considered into 

RTTP to make a more robust timetable. The disturbances that 

the model consider should be more general, which can make 

the timetable performances more stable facing with various 

disturbances. In addition, solutions that make the timetable 

recoverable under disturbances should be researched. 

Different solutions can be proposed for different disturbances. 
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